Plugin file format - Element reference

Table of contents

L EIEMENT PIUGIN. ...ttt b e e
N 1 o1 o SR
1.2 ATITDULE VEISION. ...ttt sttt ettt nb e
L3 ARITDULE IBZY ...ttt et e e e e nreeeeeneenne s

2 ElemMent Variall.........oooiiieee e
2 A L] 01U (S 7= = SRS
22 ATITDULE VAIUB......ceeeeee ettt s nte e sneenne s

K [00T 00 T o= Y2
S L ALTDULE NAME.... .o ettt b e ne s
K AN L] 01U (= o7 1 TS

T T S [o S
4.1 ATITDULE SYMDO ... sbe e

S = L= 0TS R = U
5.1 ALLHIDULE SYMIDIOL........oeeeeee e et e

B ETOMBINT TUN.....eie et b et b e b s
6.1 ALLrIDULE SYMDIOL........oeeeeece et

A == 1= 0 (o O
7.1 ATEIDULE SYMDOL.......ooeie e e

8 E1emeNnt SHULAOWN.........eoieieeceee et nne s
8.1 ALLIIDULE SYMIDIOL..... ..o et ere e

9 El@MENE FEOUITES.......eeeiie ittt ettt et e b e e be e sse e st e e sbeesnbeenneesnnee e
9.1 ALLHIDULE PIUGIN. ... sreenne e
9.2 ALLIIDULE POINT......ceeeieeee e st e e et e e sreenneennens
9.3 ALLIIDULE VEISION.......eoeee ettt e s naeenaenreenes

Plugin file format - Element reference

9.4 ATEHDULE MEECN......c.eei e et 9
10 Element tyPeAESooee e 9
10.1 ALEIDULE NBIME.......eceeeceee et et re e e e e sraereeneesneenneas 9
10.2 AtEHDULE SIGNALUNE........eeveeeie ettt e e et e e e seeneesreenneeneesneeneeas 9

Page 2

Plugin file format - Element reference

1. Element plugin

<pl ugi n
id = identifer
versi on = version string
| azy? = bool ean default "fal se">

<I-- Content: ANY -->
</ pl ugi n>
The pl ugi n element isthe root of any plugin file.

1.1. Attributeid
Thisistheidentifier of the plugin.

1.2. Attribute version

1.3. Attribute lazy

A lazy plugin jumps over the brown fox.

2. Element variable

<vari abl e
name = string
val ue = string>

<lI-- Content: EMPTY -->
</vari abl e>
<l-- Contained by: plugin -->

Variables contribute to the namespace of variable expansion for when the context is the

current plugin.

The value can contain other variable expansions in the context of the plugin. However, unlike
normal variable expansion, which can use the values of any variables declared in the plugin,
this element can only use the values of variable previously declared. Thisis simply because
when plugins are loaded, the variables are processed first, making them available to other
elements no matter where in the plugin they are found. However, while the variables are
being processed, each only has the values of previously processed variables to work with.

2.1. Attribute name

Name of the variable. May not contain the characters' {'," }' or' $'.

Page 3

Plugin file format - Element reference

This attribute is variable expanded. Variables are resolved in the context of the plugin.

2.2. Attributevalue
Vauefor the variable.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

3. Element library

<library
nane? = string
pat h = string>
<l-- Content: (setup | start | run | stop | shutdown)* -->

</library>

<l-- Contained by: plugin -->

This element indicates that the plugin has a runtime shared library associated with it. When
the plugin is determined to be required (either by not having its| azy attributesettot r ue
or by some dependency from ancther plugin, the shared library will be loaded.

Functions in the shared library can be called during the different lifecycle phases of the
plugin system. These functions are specified by the children of thel i br ary element. The
order of callsto these functionsis the same as the lexicographical ordering in the element
(within each lifecycle phase). Similary, if the plugin declares multiplel i br ary elements,
they are processed in their lexicographical order.

Other elementsin the plugin file may make use of symbols found in the shared libraries of
the plugin. Usually, they will provide the option of specifying alibrary nane attribute. If no
library name is given then they search through the list of libraries, in order, attempting to find
an appropriately named symbol, using the first that they find. However, if anane attributeis
given, they will search only inthel i br ar y element with the matching name. This means
that in the typical case of only having one shared library, no library names need to be
specified, but that possibility exists for disambiguating in the case of multiplel i br ary
elements.

3.1. Attribute name
Name of the library to be used by other elements which wish to find symbolsin the library.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

3.2. Attribute path

Page 4

Plugin file format - Element reference

Path to the shared library.

Typically, pluginswill be organised as a directory with apl ugi n. xmi fileand some
number of shared libraries (although this need not be the case). It is often convenient, then to
specify the path to the shared library with variable expansion:

<library path="${plugin.dir}/library.so"/>
This attribute is variable expanded. Variables are resolved in the context of the plugin.

4. Element setup

<set up
synbol ? = string default "Plugin_setup">
<I-- Content: EMPTY -->

</ set up>

<l-- Contained by: library -->
This element specifies a method to be run during the setup phase of the plugin system.

The lifecycle method is found by searching for the given symbol inthel i br ary that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
| azy attribute set to TRUE or by a dependency from another required plugin.
4.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
I'i brary'spat h attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

5. Element start

<start
symbol ? = string default "Plugin_start">
<I-- Content: EMPTY -->

</start>

<l-- Contained by: library -->
This element specifies a method to be run during the start phase of the plugin system.

Page 5

Plugin file format - Element reference

The lifecycle method is found by searching for the given symbol inthel i br ary that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
| azy attribute set to TRUE or by a dependency from another required plugin.
5.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
I'i brary'spat h attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

6. Element run

<run
synbol ? = string default "Plugin_run">
<I-- Content: EMPTY -->

</ run>

<l-- Contained by: library -->
This element specifies a method to be run during the run phase of the plugin system.

The lifecycle method is found by searching for the given symbol inthel i br ary that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
| azy attribute set to TRUE or by a dependency from another required plugin.
6.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
['i brary'spat h attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

Page 6

Plugin file format - Element reference

7. Element stop

<st op
synbol ? = string default "Plugin_stop">
<I-- Content: EMPTY -->

</ st op>

<l-- Contained by: library -->
This element specifies a method to be run during the stop phase of the plugin system.

The lifecycle method is found by searching for the given symbol inthel i br ary that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
| azy attribute set to TRUE or by a dependency from another required plugin.

7.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
I'i brary'spat h attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

8. Element shutdown

<shut down
synbol ? = string default "Plugin_shutdown">
<l-- Content: EMPTY -->

</ shut down>

<l-- Contained by: library -->

This element specifies a method to be run during the shutdown phase of the plugin system.

The lifecycle method is found by searching for the given symbol inthel i br ary that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

Page 7

Plugin file format - Element reference

The method will only be called if the plugin is deemed to be required (either not having its
| azy attribute set to TRUE or by a dependency from another required plugin.

8.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
I'i brary'spat h attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9. Element requires

<requi res
pl ugi n? = pluginid
poi nt ? = extension point id
version? = version string
mat ch? = { "perfect" | "equivalent" | "conpatible" |

"greaterO Equal " } default "conpatible">

<I-- Content: EMPTY -->
</requires>
<!-- Contained by: plugin -->
This element indicates that the plugin depends upon another plugin or requires an extension
point. Normally implicit requirements are sufficient, but on occasion it is necessary to make
requirements explicit. These are occasions when the required plugin or extension point will
be used programmatically rather than through the plugin file. Additionally, since extensions
are not processed until after the dependency analysis phase is compl ete, some extension
points may require that extensions are explicit about which exports they make use of.

Exactly one of attributes pl ugi n or poi nt must be used.

If the requirement is for a plugin then a particular version may optionally be checked for.

9.1. Attribute plugin
Thisistheid of the required plugin.
This attribute must not be specified if poi nt isalso specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.2. Attribute point

Thisistheid of the required extension point.

Page 8

Plugin file format - Element reference

This attribute must not be specified if pl ugi n isalso specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.3. Attribute version
Thisisthe version of the required plugin.
This attribute must not be specified if poi nt isalso specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.4. Attribute match
This attribute describes the type of validation for the plugin version.
This attribute must not be specified if poi nt isalso specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

10. Element typedef

<t ypedef
name id
si gnature si gnat ur e>
<I-- Content: EMPTY -->
</typedef >
<l-- Contained by: plugin -->

10.1. Attribute name

This attribute is variable expanded. Variables are resolved in the context of the plugin.

10.2. Attribute signature

This attribute is variable expanded. Variables are resolved in the context of the plugin.

Page 9

	1 Element plugin
	1.1 Attribute id
	1.2 Attribute version
	1.3 Attribute lazy

	2 Element variable
	2.1 Attribute name
	2.2 Attribute value

	3 Element library
	3.1 Attribute name
	3.2 Attribute path

	4 Element setup
	4.1 Attribute symbol

	5 Element start
	5.1 Attribute symbol

	6 Element run
	6.1 Attribute symbol

	7 Element stop
	7.1 Attribute symbol

	8 Element shutdown
	8.1 Attribute symbol

	9 Element requires
	9.1 Attribute plugin
	9.2 Attribute point
	9.3 Attribute version
	9.4 Attribute match

	10 Element typedef
	10.1 Attribute name
	10.2 Attribute signature

