Plugin file format - Variable expansion

Table of contents

1V aiaDl@ EXPANSION. ...ttt bbbt e e e e e b e neene e 2
2 GlODEI CONEEXL......oeeeieeeetie ettt be et e s e be et e s reeeeenee e 2
2.1 Variabl@ BNV.NAIME........coiiiie ettt r e s sre s 2
K 10 1 o0 1= PSS 2
3.1 Variable PIUGINIT.....ceeeeceece et sreeae e nne s 3
32V ariable PIUGIN.GIT. ... 3

3.3 Variable PlUGIN.VEISION........coiiiie et 3




Plugin file format - Variable expansion

1. Variable expansion

Much of the plugin file format allows variables to be expanded. This simplifies the process of
defining plugins and allows paths, etc. not to be hard coded.

The format of expansionsisrelatively simple. A string is expanded by replacing each
occurrence of ${ vari abl e nane} with the value of the variable. Thus, for example,
when defining a shared library, the path to the library can be set as follows:

<library path="${plugin.dir}/library.so"/>

Variables are resolved in some context or other (the documentation for the attribute or
element supporting expansion will indicate what the context is). There most common
contexts is the plugin context.

The character ' $' may be escaped by repeating it. So, if we have some variable, f 0o, with
value, bar , then the following strings expand:

The value of foo is ${foo}. The value of foo is bar.

The value of $${foo} is ${foo}. The value of ${foo} is bar.

2. Global context

The global context first looks for variables that are application defined. Applications can add
as many global variables as they wish. Check the application documentation to see which
variables are defined.

If the variable is still not found, then the context will check the folling variables in the order
below, returning the first one found.

2.1. Variable env.name

Thisisafamily of variables beginning withenv. .

If the variable name starts with env. the context does then it will take the remainder of the
name and try find an environment variable with that name, returning that.

3. Plugin context

The plugin context searches for variablesin the following order.

First plugin defined variables are checked. These are created by having var i abl e elements

Page 2



Plugin file format - Variable expansion

in the plugin specification (see the Element reference). For example, the following code
creates two variables. Thefirst isnamed f oo with value bar and the second iscaled mar s
with valuechocol at e bar.

<vari abl e name="foo0" val ue="bar"/>
<vari abl e name="mars" val ue="chocol ate ${foo}"/>

The order of variable declaration isimportant. Had it been the other way around, then the value of bar would have been
’ chocol ate . ‘

3.1. Variable plugin.id
Thisisthei d attribute of the plugin.

3.2. Variable plugin.dir
Thisisthe absolute directory path in which the plugin specification file is found.

3.3. Variable plugin.version
Thisisthever si on attribute of the plugin.

If the variable till has not been found, then the global context will be searched for the
variable.

When an element indicates that some string is expanded in the context of the plugin, they mean in the context of pluginfilein
which the string is found. This means that if an extension point says that strings in extensions are expanded in the context of
the plugin, it does not mean in its plugin context but in the context of the extending plugin.

Page 3



	1 Variable expansion
	2 Global context
	2.1 Variable env.name

	3 Plugin context
	3.1 Variable plugin.id
	3.2 Variable plugin.dir
	3.3 Variable plugin.version


