Project Roadmap

Table of contents

1 PrOJECE ROBOMED.c.eeeeeetesiesie sttt sttt b et sa e b nr e ne e
2 RE EASE DIALES. ... oo e aaaaaaann
K = | (0 (=TT

1. Project Roadmap

Project Roadmap

Thisfile describes the intended release schedule for the project. It should be noted that asthis
project is a'hobby' type project, fitting itself in around other, more pressing work, any

timescal es should be taken with a pinch of salt.

2. Release Dates

Preliminary release guesses.

0.1 May 2008
1.0 January 2009
2.0 January 2010

Initial alpharelease

Thisrelease isaimed at getting
basic functionality correct.
Efficiency isnot going to be a
concern. The hope isthat it will be
fully usable, and will be an
opportunity to validate the APIs
are sufficient. Also, | hopeto see if
anyoneisinterested in this system.

There will likely be some pain
involved ininstalling the system.
There might be some issues
running it on different operating
systems. It might not be
thoroughly tested.

First release

All the things should be done
before I'm happy for people to use
the system in anger.

Second release

Really thisisarepository for a
wish list of things | don't expect to
get round to in ahurry. Not all of
them are difficult, just
'nice-to-have's rather than
'must-have's.

Page 2

Project Roadmap

3. Features

Features dlated for particular releases (should really use a proper feature/bug base)

Error handling

Test cases

Documentation

Itdl

Makefile

GCC style release
process - autotools:
automake, autoconf

High

High
High

Medium

Medium

High

Not started

Not started

Not started

Not started

Not started

Not started

| come from aJavaand
C++ background. | still
don't know how to do
error handling well in C.
Redlly, thistask just
means finding someone
who's been doing Cin
big projects for a bit
longer than me and
getting their input.

Says it all really.

Need tutorials and API
docs and so on.

| need to move from
using libdl to libltdl. That
should alow this system
to run on more systems
that just Linux.

My make files are crap.
| do actually quite hate
make. They need to be
beefed up and have to
manage C
dependencies. It's
quite possible that the
feature below will take
care of this.

Have to make install as
easy as possible. Plus,
I have hard coded dir
names in my makefile!
They have to go.

Page 3

Project Roadmap

Scripting

High

Not started

Thiswill embed scripting
into the system. It will
support at least
ECMAScript and
possibly more languages.

Y ou will be able to have
scripts execute in the
different phases of the
plugin lifecycle.

Possibly, each plugin
would get it's own,
unshared scripting engine
instance.

You will be able to write
extension pointsin a
script. Essentially, this
means you can have:

pt">

t ensi on"
pt">

Page 4

Project Roadmap

</ ext ensi on- poi nt >

Working out what to do
for extensions might take
alittle more thought.

<ext ensi on

poi nt =" com acne. my- event"

| anguage="j avascri pt" >
function

cal | back() {

/1 Hmm but what

about the types?

</ ext ensi on- poi nt >

There needs to be some
clever way for dllsto be
registered for scripting
classes etc. Thiswill
need some thought.

There will also need to
be away to know when
objects have died in non
garbage collected code.
This might be tricky for
GCC.

Cacheing High Not started At the moment the plugin
filesare all loaded
whether they are lazy or
not. It should be possible
to cache information
about the plugins and
only reparse filesthat are
new.

There may be some
difficulties because
plugins might have
variables expanded from
the environment which
could cause dependencies
that can only be known at
runtime. Possibly this
might be fixed by
explicity marking plugins

Page 5

Stylesheets

Backwards
compatability support

Low

Medium

Not started

Not started

Project Roadmap

with an attribute
cacheabl e="true".

We could alow

<?xm - st yl esheet ?>
directives. These might
enable people to write
large, complex plugin
filesmore easily.

I'm not sureif thisis
necessary or even
desirable.

At the moment we can
only have one accepted
plugin document format.
It should be possible to
have multiple versions
co-existing. Thiswould
mean that all the
PluginManager's
extensibility stuff would
be packaged up into
objects. Y ou would then
build plugin parsers with
different element
handlers. They might
also be each derived from
different base parsers so
that the plugin system
itself can evolve.

Thisisall very well, but |
think quite afew people

would have to be using it
for thisto be worthwhile.

Page 6

	1 Project Roadmap
	2 Release Dates
	3 Features

