
Plugin file format - Element reference

Table of contents

1 Element plugin... 3

1.1 Attribute id...3

1.2 Attribute version..3

1.3 Attribute lazy... 3

2 Element variable.. 3

2.1 Attribute name... 3

2.2 Attribute value... 4

3 Element library...4

3.1 Attribute name... 4

3.2 Attribute path...4

4 Element setup...5

4.1 Attribute symbol..5

5 Element start.. 5

5.1 Attribute symbol..6

6 Element run..6

6.1 Attribute symbol..6

7 Element stop...7

7.1 Attribute symbol..7

8 Element shutdown..7

8.1 Attribute symbol..8

9 Element requires.. 8

9.1 Attribute plugin... 8

9.2 Attribute point... 8

9.3 Attribute version..9

Copyright © 2008 Hugh Leather All rights reserved.

9.4 Attribute match..9

10 Element typedef..9

10.1 Attribute name... 9

10.2 Attribute signature... 9

Plugin file format - Element reference

Page 2
Copyright © 2008 Hugh Leather All rights reserved.

1. Element plugin

<plugin
id = identifer
version = version string
lazy? = boolean default "false">
<!-- Content: ANY -->

</plugin>

The plugin element is the root of any plugin file.

1.1. Attribute id

This is the identifier of the plugin.

1.2. Attribute version

1.3. Attribute lazy

A lazy plugin jumps over the brown fox.

2. Element variable

<variable
name = string
value = string>
<!-- Content: EMPTY -->

</variable>
<!-- Contained by: plugin -->

Variables contribute to the namespace of variable expansion for when the context is the
current plugin.

The value can contain other variable expansions in the context of the plugin. However, unlike
normal variable expansion, which can use the values of any variables declared in the plugin,
this element can only use the values of variable previously declared. This is simply because
when plugins are loaded, the variables are processed first, making them available to other
elements no matter where in the plugin they are found. However, while the variables are
being processed, each only has the values of previously processed variables to work with.

2.1. Attribute name

Name of the variable. May not contain the characters '{', '}' or '$'.

Plugin file format - Element reference

Page 3
Copyright © 2008 Hugh Leather All rights reserved.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

2.2. Attribute value

Value for the variable.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

3. Element library

<library
name? = string
path = string>
<!-- Content: (setup | start | run | stop | shutdown)* -->

</library>
<!-- Contained by: plugin -->

This element indicates that the plugin has a runtime shared library associated with it. When
the plugin is determined to be required (either by not having its lazy attribute set to true
or by some dependency from another plugin, the shared library will be loaded.

Functions in the shared library can be called during the different lifecycle phases of the
plugin system. These functions are specified by the children of the library element. The
order of calls to these functions is the same as the lexicographical ordering in the element
(within each lifecycle phase). Similary, if the plugin declares multiple library elements,
they are processed in their lexicographical order.

Other elements in the plugin file may make use of symbols found in the shared libraries of
the plugin. Usually, they will provide the option of specifying a library name attribute. If no
library name is given then they search through the list of libraries, in order, attempting to find
an appropriately named symbol, using the first that they find. However, if a name attribute is
given, they will search only in the library element with the matching name. This means
that in the typical case of only having one shared library, no library names need to be
specified, but that possibility exists for disambiguating in the case of multiple library
elements.

3.1. Attribute name

Name of the library to be used by other elements which wish to find symbols in the library.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

3.2. Attribute path

Plugin file format - Element reference

Page 4
Copyright © 2008 Hugh Leather All rights reserved.

Path to the shared library.

Typically, plugins will be organised as a directory with a plugin.xml file and some
number of shared libraries (although this need not be the case). It is often convenient, then to
specify the path to the shared library with variable expansion:
<library path="${plugin.dir}/library.so"/>

This attribute is variable expanded. Variables are resolved in the context of the plugin.

4. Element setup

<setup
symbol? = string default "Plugin_setup">
<!-- Content: EMPTY -->

</setup>
<!-- Contained by: library -->

This element specifies a method to be run during the setup phase of the plugin system.

The lifecycle method is found by searching for the given symbol in the library that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
lazy attribute set to TRUE or by a dependency from another required plugin.

4.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
library's path attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

5. Element start

<start
symbol? = string default "Plugin_start">
<!-- Content: EMPTY -->

</start>
<!-- Contained by: library -->

This element specifies a method to be run during the start phase of the plugin system.

Plugin file format - Element reference

Page 5
Copyright © 2008 Hugh Leather All rights reserved.

The lifecycle method is found by searching for the given symbol in the library that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
lazy attribute set to TRUE or by a dependency from another required plugin.

5.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
library's path attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

6. Element run

<run
symbol? = string default "Plugin_run">
<!-- Content: EMPTY -->

</run>
<!-- Contained by: library -->

This element specifies a method to be run during the run phase of the plugin system.

The lifecycle method is found by searching for the given symbol in the library that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
lazy attribute set to TRUE or by a dependency from another required plugin.

6.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
library's path attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

Plugin file format - Element reference

Page 6
Copyright © 2008 Hugh Leather All rights reserved.

7. Element stop

<stop
symbol? = string default "Plugin_stop">
<!-- Content: EMPTY -->

</stop>
<!-- Contained by: library -->

This element specifies a method to be run during the stop phase of the plugin system.

The lifecycle method is found by searching for the given symbol in the library that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

The method will only be called if the plugin is deemed to be required (either not having its
lazy attribute set to TRUE or by a dependency from another required plugin.

7.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
library's path attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

8. Element shutdown

<shutdown
symbol? = string default "Plugin_shutdown">
<!-- Content: EMPTY -->

</shutdown>
<!-- Contained by: library -->

This element specifies a method to be run during the shutdown phase of the plugin system.

The lifecycle method is found by searching for the given symbol in the library that
contains the element. The method must follow the prototype:

bool (*)(Plugin* plugin)

This function should return TRUE if the plugin is successfully initialised. Otherwise, it
should return FALSE and the plugin system will fail to start.

Plugin file format - Element reference

Page 7
Copyright © 2008 Hugh Leather All rights reserved.

The method will only be called if the plugin is deemed to be required (either not having its
lazy attribute set to TRUE or by a dependency from another required plugin.

8.1. Attribute symbol

The attribute gives the name of a symbol in the shared library pointed to by the parent
library's path attribute.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9. Element requires

<requires
plugin? = plugin id
point? = extension point id
version? = version string
match? = { "perfect" | "equivalent" | "compatible" |

"greaterOrEqual" } default "compatible">
<!-- Content: EMPTY -->

</requires>
<!-- Contained by: plugin -->

This element indicates that the plugin depends upon another plugin or requires an extension
point. Normally implicit requirements are sufficient, but on occasion it is necessary to make
requirements explicit. These are occasions when the required plugin or extension point will
be used programmatically rather than through the plugin file. Additionally, since extensions
are not processed until after the dependency analysis phase is complete, some extension
points may require that extensions are explicit about which exports they make use of.

Exactly one of attributes plugin or point must be used.

If the requirement is for a plugin then a particular version may optionally be checked for.

9.1. Attribute plugin

This is the id of the required plugin.

This attribute must not be specified if point is also specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.2. Attribute point

This is the id of the required extension point.

Plugin file format - Element reference

Page 8
Copyright © 2008 Hugh Leather All rights reserved.

This attribute must not be specified if plugin is also specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.3. Attribute version

This is the version of the required plugin.

This attribute must not be specified if point is also specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

9.4. Attribute match

This attribute describes the type of validation for the plugin version.

This attribute must not be specified if point is also specified.

This attribute is variable expanded. Variables are resolved in the context of the plugin.

10. Element typedef

<typedef
name = id
signature = signature>
<!-- Content: EMPTY -->

</typedef>
<!-- Contained by: plugin -->

10.1. Attribute name

This attribute is variable expanded. Variables are resolved in the context of the plugin.

10.2. Attribute signature

This attribute is variable expanded. Variables are resolved in the context of the plugin.

Plugin file format - Element reference

Page 9
Copyright © 2008 Hugh Leather All rights reserved.

	1 Element plugin
	1.1 Attribute id
	1.2 Attribute version
	1.3 Attribute lazy

	2 Element variable
	2.1 Attribute name
	2.2 Attribute value

	3 Element library
	3.1 Attribute name
	3.2 Attribute path

	4 Element setup
	4.1 Attribute symbol

	5 Element start
	5.1 Attribute symbol

	6 Element run
	6.1 Attribute symbol

	7 Element stop
	7.1 Attribute symbol

	8 Element shutdown
	8.1 Attribute symbol

	9 Element requires
	9.1 Attribute plugin
	9.2 Attribute point
	9.3 Attribute version
	9.4 Attribute match

	10 Element typedef
	10.1 Attribute name
	10.2 Attribute signature

