
Project Roadmap

Table of contents

1 Project Roadmap..2

2 Release Dates... 2

3 Features.. 2

Copyright © 2008 Hugh Leather All rights reserved.

1. Project Roadmap

This file describes the intended release schedule for the project. It should be noted that as this
project is a 'hobby' type project, fitting itself in around other, more pressing work, any
timescales should be taken with a pinch of salt.

2. Release Dates

Preliminary release guesses.

Version Release Date Notes

0.1 May 2008 Initial alpha release

This release is aimed at getting
basic functionality correct.
Efficiency is not going to be a
concern. The hope is that it will be
fully usable, and will be an
opportunity to validate the APIs
are sufficient. Also, I hope to see if
anyone is interested in this system.

There will likely be some pain
involved in installing the system.
There might be some issues
running it on different operating
systems. It might not be
thoroughly tested.

1.0 January 2009 First release

All the things should be done
before I'm happy for people to use
the system in anger.

2.0 January 2010 Second release

Really this is a repository for a
wish list of things I don't expect to
get round to in a hurry. Not all of
them are difficult, just
'nice-to-have's rather than
'must-have's.

Project Roadmap

Page 2
Copyright © 2008 Hugh Leather All rights reserved.

3. Features

Features slated for particular releases (should really use a proper feature/bug base)

Feature Priority Status Notes

Version 0.1

Version 1.0

Error handling High Not started I come from a Java and
C++ background. I still
don't know how to do
error handling well in C.
Really, this task just
means finding someone
who's been doing C in
big projects for a bit
longer than me and
getting their input.

Test cases High Not started Says it all really.

Documentation High Not started Need tutorials and API
docs and so on.

ltdl Medium Not started I need to move from
using libdl to libltdl. That
should allow this system
to run on more systems
that just Linux.

Makefile Medium Not started My make files are crap.
I do actually quite hate
make. They need to be
beefed up and have to
manage C
dependencies. It's
quite possible that the
feature below will take
care of this.

GCC style release
process - autotools:
automake, autoconf

High Not started Have to make install as
easy as possible. Plus,
I have hard coded dir
names in my makefile!
They have to go.

Project Roadmap

Page 3
Copyright © 2008 Hugh Leather All rights reserved.

Version 2.0

Scripting High Not started This will embed scripting
into the system. It will
support at least
ECMAScript and
possibly more languages.

You will be able to have
scripts execute in the
different phases of the
plugin lifecycle.
Possibly, each plugin
would get it's own,
unshared scripting engine
instance.

<script
language="javascript">

<setup>
var x = 10;
print("Hello
plugin folk");
function foo() {
print("Foo: x
=", x);

}
</setup>
<start

src="script.js"/>
<shutdown>

x
= 20;
foo();
</shutdown>
</script>

You will be able to write
extension points in a
script. Essentially, this
means you can have:

<extension-point
id="com.acme.my-extension"
language="javascript">

function
extend(
specification) {
// specification
is the XML of the
extender

Project Roadmap

Page 4
Copyright © 2008 Hugh Leather All rights reserved.

}
</extension-point>

Working out what to do
for extensions might take
a little more thought.

<extension
point="com.acme.my-event"
language="javascript">

function
callback() {
// Hmm, but what
about the types?

}
</extension-point>

There needs to be some
clever way for dlls to be
registered for scripting
classes etc. This will
need some thought.

There will also need to
be a way to know when
objects have died in non
garbage collected code.
This might be tricky for
GCC.

Cacheing High Not started At the moment the plugin
files are all loaded
whether they are lazy or
not. It should be possible
to cache information
about the plugins and
only reparse files that are
new.

There may be some
difficulties because
plugins might have
variables expanded from
the environment which
could cause dependencies
that can only be known at
runtime. Possibly this
might be fixed by
explicity marking plugins

Project Roadmap

Page 5
Copyright © 2008 Hugh Leather All rights reserved.

with an attribute
cacheable="true".

Stylesheets Low Not started We could allow
<?xml-stylesheet?>
directives. These might
enable people to write
large, complex plugin
files more easily.

I'm not sure if this is
necessary or even
desirable.

Backwards
compatability support

Medium Not started At the moment we can
only have one accepted
plugin document format.
It should be possible to
have multiple versions
co-existing. This would
mean that all the
PluginManager's
extensibility stuff would
be packaged up into
objects. You would then
build plugin parsers with
different element
handlers. They might
also be each derived from
different base parsers so
that the plugin system
itself can evolve.

This is all very well, but I
think quite a few people
would have to be using it
for this to be worthwhile.

Project Roadmap

Page 6
Copyright © 2008 Hugh Leather All rights reserved.

	1 Project Roadmap
	2 Release Dates
	3 Features

